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LE'lTER TO THE EDITOR 

Monte Carlo study of linear diffusion-limited aggregation 

Jean-Marc Debierre and Loi'c Turban 
Laboratoire de Physique du Solide, ENSMIM, Parc de Saurupt, F 54042 Nancy, France 
and UniversitC de Nancy I,  BP 239, F 54506 Vandoeuvre les Nancy, France 

Received 21 October 1985 

Abstract. Linear diffusion-limited aggregation is studied on the square lattice. The radius 
of gyration exponent Y = 0.79 f 0.01 is estimated using the Monte Carlo method and a 
scaling analysis. 

Kinetically growing self-avoiding walks (SAW) have been extensively studied recently 
(see Lyklema (1985a) for a review). In these walks the jump probability depends on 
the local environment. Some of them have asymptotic properties differing from the 
usual SAW with v = in d = 2 and an upper critical dimension d,  = 4 above which the 
walk is Brownian. 

In the true SAW (Amit er al 1983), which is not strictly self-avoiding, the jump 
probability depends on the number of times ni the nearest-neighbour sites (NN)  have 
already been visited: 

pi = exp(-gni) C exp(-gnj) (1) 
( N N  )-' 

It has an upper critical dimension d ,  = 2 and v = 3 in one dimension (Pietronero 1983). 
The growing self-avoiding trail (Lyklema 1985b), for which bonds are not allowed to 
be visited more than once and the jump probability pi = l/(number of free bonds) 
allows for self-intersections, has an upper critical dimension d, = 3 and v = 0.535 in 
d = 2. The indefinitely growing SAW (Kremer and Lyklema 1985) with a jump probabil- 
ity p i  = l/(number of jump sites), where the jump sites are first-neighbour sites which 
do not lead into a cage, is truly self-avoiding and never terminates; then v = 0.567 in 
d = 2 and d,  is unknown. The IGSAW has been generalised (Lyklema and Evertsz 1985) 
in the Laplacian random walk (LRW).  The jump probability is defined as 

where 7 is a parameter and the potential 4i is a solution of the discretised Laplace 
equation which satisfies the boundary conditions 4 = 1 on a circle of radius R,, much 
larger than the walk radius R, and 4 = 0 on the sites already visited. Contrary to the 
case of the dielectric breakdown problem (Niemeyer er a1 1984) from which it was 
inspired, to remain linear, growth only occurs near the last aggregated particle. The 
IGSAW is recovered when 7 = 0 and varies continuously with 7 as in a recent generalisa- 
tion of the TSAW (Ottinger 1985). 

In this letter we study on the square lattice a new type of kinetically growing SAW 

in which linear growth occurs via diffusion-limited aggregation (DLA). Although DLA 
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has been extensively studied since its introduction by Witten and Sander (Witten and 
Sander 1981,1983, Meakin 1983), to our knowledge these studies only concern branched 
structures. 

The chains are generated as usual in DLA. A seed particle is placed at the origin 
of the square lattice and a new particle is launched at random from a distance R,, 
performing a random walk on the lattice. The particle is not allowed to visit an 
occupied site; when it hits the chain, the particle takes another direction in the next 
step. It aggregates as soon as it reaches a site which is a first neighbour of the active 
end of the chain. Then a new particle is released and the process is repeated. After 
the first step the site at the origin becomes inactive and the chain grows only from one 
end. This convention should not affect the asymptotic properties and it simplifies the 
calculations. The growth may continue indefinitely since there is always one path 
leading to the active end, the way followed by the last particle to aggregate. 

We chose R, = 2 4  where R is the radius of a circle centred at the origin and just 
enclosing the chain. We have verified, by varying R, in a preliminary study, that this 
value is large enough. When a particle goes away, it is eliminated and a new one is 
started at R,. In order to avoid long and ineffective trapping along the mazes of the 
chain, the number of jumps is limited to 2L2 where L is the distance, in lattice units, 
from the starting point to the active end. After that number of steps is exhausted, the 
particle is eliminated and a new particle is added at R,. At each step N, the following 
radii are stored: 

R i ( N ) = ( 1 / 2 N 2 ) C C ( r i - r j ) 2  
i j  

Re is the end-to-end radius, R,  an averaged end-to-end radius and R, the radius of 
gyration of the chain. The calculations have been done in assembly language on 8088 
and 8087 microprocessors. Limitations on computer time led us to grow chains of up 
to 45 particles, taking averages over lo4 samples for each size. A rapid shift-register 
random number generator was used (Kirkpatrick and Stoll 1981). 

The critical exponent Y may be obtained through a scaling analysis of the data 
(Botet et a1 1984) 

( 6 )  
When exact averages are used, a better convergence is observed when M = N -  1 
(Derrida and de Seze 1982). This is no longer true with Monte Carlo data due to 
statistical fluctuations. In this case better results are obtained when N - M is larger. 
Here we have used the following definition (Lyklema 1985b): 

Y N , M  = $ln[(R2( N))/(R2(M))1/1n( N /  M)* 

v ( N )  =fln[(R*(N+i))/(R*(N-i))](ln[(N+ i)/(N-i)]}-’ (7) 

where i has to be chosen large enough to obtain a smooth variation (figure 1). Assuming 
the usual asymptotic behaviour for the mean square radius (Privman 1984) 

( R’( N ) )  = AN’”( 1 + 

v ( ~ ) =  v - $ ~ ~ ~ - A - ; ~ ~ - l  +. . .. 

C N - ~  + . . .) (8) 

(9) 

equation (7) gives 
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1 / N  

Figure 1. Critical exponent v , ( N )  of the mean square radius of gyration ( R : ( N ) )  on the 
square lattice against 1 /  N, obtained using equation (7) with i = 1 (+ )  for 4 s  N S  44 and 
i = 7  (*) for 10GNN338. 

Keeping only the leading correction term in equation (9), the exponent Y is obtained 
through a least squares fit of v ( N )  against N-' ( N > 2 5 ) .  The fit is not very sensitive 
to the choice of y so we assumed an analytic correction, y = l  (figure 2). The 
extrapolated values (table 1) are Y ~ , ~  = 0.784, vg = 0.795 with i = 7. One may notice 
that although Y J N )  and va(N)  decrease, v g ( N )  increases with N for large N values; 

1 / N  

Figure 2. Critical exponents v , ( N )  ( A ) ,  v , ( N ) ( + )  and v , ( N )  (e) of the mean square 
radius ( R t (  N ) )  ( a  = e, a, g) on the square lattice, against 1/ N, obtained using equation 
(7) with i = 7 .  
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Table 1. Extrapolated values of the mean square radius exponent v, (U = e, end-to-end 
radius; a, averaged end-to-end radius; g, radius of gyration). The first column gives the 
first value of N in the fit to a N-‘ variation. 

25 0.786 
26 0.786 
27 0.784 
28 0.780 
29 0.780 
30 0.781 
31 0.782 
32 0.784 

0.784 
0.784 
0.784 
0.784 
0.784 
0.784 
0.784 
0.785 

0.795 
0.796 
0.796 
0.794 
0.794 
0.793 
0.794 
0.795 

this seems to exclude the possibility of the linear DLA belonging to the SAW universality. 
From the extrapolated values, one may estimate that v = 0.79 f 0.01. A least squares 
fit of W 2 ” ( R 2 ( N ) )  against gives the amplitude A (equation (8)) which is also 
not very sensitive to the value of y. The following estimates may be given: A,= 
0.73 rt 0.01, A, = 0.280f 0.005, A, = 0.155 rt 0.005 with the central value corresponding 
to y = l .  

The fractal dimension D = v-’ = 1.27 is lower than in the IGSAW, a result which is 
not unexpected since the chain is ‘attracted’ outwards by the diffusion field. Our result 
agrees with the LRW with 7 = 1 (Lyklema and Evertsz 1985) for which v = 0.8. The 
two problems are equivalent except for the boundary conditions. In the linear DLA 

the particle is reflected by the chain whereas in the LRW it is absorbed. This difference 
in the boundary conditions is probably irrelevant. 

One may expect that the upper critical dimension will be reached when the chain 
is transparent to the random walk and transparent to itself (Witten and Sander 1983). 
According to the rule of fractal codimension additivity (Mandelbrot 1982), the first 
condition requires d > D (walk) + D, where D is the chain fractal dimension and D 
(walk) = 2 for a random walk and the second requires d > 2 0 .  Since the diffusion field 
is then essentially uniform near the active end and self-intersections are negligible, the 
chain will perform a random walk with D = 2. Both conditions are satisfied at d ,  = 4. 

To end, let us mention that the d = 2 linear DLA may find a physical realisation in 
the diffusion-limited growth of a polymer chain adsorbed on a surface, provided the 
adsorption is strong enough to prevent the relaxation. 
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